

TO COMPARE THE ORAL LABETALOL VERSUS NIFEDIPINE IN SEVERE HYPERTENSION IN PREGNANCY

Ayesha Naz¹, Shahdab¹, Afshan Inayat¹, Shabana Yasmeen¹, Saima Akbar²

ABSTRACT

Background: Pregnancy related hypertension is one of the common medical disorders in pregnancy which affect the mortality and morbidity related to foetus and mother. There is no proper protocol for selection of drugs among nifedipine and labetalol for severe hypertension in pregnancy

Objective: To find out the number of doses of labetalol and nifedipine required to decrease the severe hypertension of pregnancy by 25%.

Method: 40 patients in each group with severe pregnancy hypertension of greater than 28 weeks of gestation were included in the study. Nifedipine of 30 mg, 30mg, 30mg, 30mg and 30mg (after 30 minutes) were given in first group gradually unless the target BP is achieved. Labetalol intravenous was preceded from 20mg, to 40mg, to 80mg and to 80mg were given with each half hour apart with BP monitoring and when the target BP was achieved no further doses were given. Any side effect was also noted.

Result: there was no significant difference in the baseline between the two groups. The 4 (10%) patients in nifedipine group and 16 (40%) patients in group L achieved the blood pressure goal with the first dose this was significantly higher patients in labetalol group ($p=0.04$). During second dose 8 (20%) patient in nifedipine group and 10 (25%) patients in labetalol group achieved the required blood pressure goal, this difference was not significant ($p=0.15$). With the third dose 13 (32.5%) patients in group N and 9 (22.5%) patients in group L achieved the blood pressure goal ($p=0.43$), with 4th dose 11 (27.5%) patient in N group and 5 (12.5%) patients in L group achieved blood pressure goal ($p=0.71$). increasing the dose to 5th one 4 (10%) group in N group and 0(0%) in L group achieved blood pressure.

Conclusion: Both the drug is effective in controlling the severe hypertension in pregnancy. Labetalol were rapid in while nifedipine took time for BP controlling. Further randomization studies are recommended to further strength these effects.

INTRODUCTION

Pregnancy related hypertension is one of the common medical disorder in pregnancy which effect the mortality and morbidity related to foetus and mother¹. The worldwide complicated hypertension in pregnancy is from 7% to 10%². The maternal mortality due to pregnancy related hypertension has been reported to be up to 30% of all maternal deaths³. Severe preeclampsia is one the pregnancy related hypertensive disease which is included in these.

The severe pregnancy related hypertension is consider, according to American college of obstetrics and Gynaecologists (ACOG), when the systolic blood pressure is equal to or greater than 160 mmHg and/or the diastolic blood pressure is equal to or greater than 110mmHg and is acute onset⁴. This usually occurs from the 20 weeks of gestation onward. The risk factors for such hypertension include familial history, maternal smoking, advancing age, pre-existing diabetes or hypertension, anti-phospholipid syndrome etc⁵.

¹Department of Gynecology KTH Peshawar

²Department of Gynecology Nowshera Medical College

Address for correspondence:

Dr. Ayesha naz

Email: shehzadnaz123@yahoo.com

Phone No: 03369311994

The management of such hypertension is pregnancy is still a major challenge face by many gynaecologists and general physicians. The initiation of proper medical therapy and the choice of drug, for mild or moderate blood pressure in pregnancy is still a major problem. For severe hypertension in pregnancy the smooth and safely lowered of the BP is necessary for the sake of mother as well as for foetus. Recants studies have proposed the Hydralazine, Nifedipine and Labetalol for the treatment of severe hypertension in pregnancy⁶. Up to now the hydralazine was used as first choice for severe pregnancy hypertension, however a meta-analysis did not agree with this first choice of hydralazine⁷ because of the risk of causing severe hypotension and other complication to mother and fetus. Another study did not showed any difference between nifedipine or labetalol with hydralazine.

The choice of drug by the clinician is depend upon the clinician experience, familiarity with drug and the cost of drug. Currently there is proper guideline to support the use of one or any metanalysis study.

This study will compare the effect of the labetalol with nifedipine in patient with hypertension in severe preeclampsia patients. The result of my study will be used for the superiority of one drug in the management of sever hypertension in pregnancy.

METHODOLOGY

This study was conducted in lady reading hospital from 1-3-2019 to 31-8-2019. All the patient with hypertension in severe preeclampsia presenting to the Gynae department for the management of this hypertension, with gestation age greater than 28 weeks up to the delivery, without end organ damage and singleton pregnancy on ultrasound were included in the study. Severe pregnancy induced hypertension was defined as when the patient has no past history of chronic hypertension presents with a systolic blood pressure of equal to or greater than 160 mmHg and/or the diastolic blood pressure is equal to or greater than 110mmHg and is acute onset⁴. Those entire patients with bronchial asthma, congestive heart failure, any type of heart block, previous ischemic heart diseases, chronic kidney failure congenital heart anomalies and those with diabetes were excluded from the study.

A total of 80 patients fulfilling the selection criteria were admitted for management of her hypertension. This was divided into two equal groups (40 in each) one group of Nifedipine (group N) and another group with Labetalol (Group L). Detail history and detail examination were done for proper selection. BP was check after one hour of admission to gynae unit. The BP reduction was not more than 25% of the baseline BPS. Group N patients received tablet Nifedipine 10mg orally and were repeated after every 30 minutes (no more than 50mg total) until the target blood pressure of 25% reduction in the mean arterial pressure at baseline. Group L patient

received intravenous labetalol 20mg proceeding to 40mg after half hour and 80mg (not more than 220mg total dose) after every half hour. Once the BP was in controlled the patient was prescribed oral labetalol 100mg BD for control of BP when discharging.

The outcome was the number of doses which gain the 25% decrease in the baseline BP of patient. The patients BP, Pulse, any symptom of headache, nausea was recorded. Fetal heart rate was monitored. And any side effect experiences by the patient were noted in the proforma.

RESULT

In our 80 patients with 40 in each group, mean age was 26.41 ± 5.30 in group N and 25.31 ± 4.18 in group L ($p=0.093$), average gestational age was 34 in group N and 35 in group L ($p=0.748$), the average systolic blood pressure was 172.3 ± 14.32 mmHg in N group and 173.01 ± 10.69 in group L ($p=0.235$), mean diastolic blood pressure was 110 ± 9.02 in group N and 112 ± 8.13 in group L ($p=0.430$) and the mean arterial blood pressure was 130 ± 7.61 mmHg in group N and 131 ± 7.42 in group L ($p=0.860$). All these difference were not significant (Table 1).

The 4 (10%) patients in nifedipine group and 16 (40%) patients in group L achieved the blood pressure goal with the first dose this was significantly higher patients in labetalol group ($p=0.04$). During second dose 8 (20%) patient in nifedipine group and 10 (25%) patients in labetalol group achieved the required blood pressure

Table 1 Baseline Characteristics

	Nafidipin group	Labetalol group	P value
Age	26.41 ± 5.30	25.31 ± 4.18	0.093
Gestational age	34	35	0.748
SBP (mmHg)	172.3 ± 14.32	173.01 ± 10.69	0.235
DBP (mmHg)	110 ± 9.02	112 ± 8.13	0.430
MAP (mmHg)	130 ± 7.61	131 ± 7.42	0.860

Table 2 Comparison of the two groups

No of doses required	Nifedipine group (40)	Labetalol group (40)	P value
1	4 (10%)	16 (40%)	0.04
2	8 (20%)	10 (25%)	0.15
3	13 (32.5%)	9 (22.5%)	0.43
4	11 (27.5%)	5 (12.5%)	0.71
5	4 (10%)	0 (0%)	-
Adverse events			
Headache	0 (0%)	2 (5%)	1.03
Dizziness	0 (0%)	1 (2.5%)	
Mother tachycardia	2 (5%)	1 (2.5%)	
Fetal tachycardia	1 (2.5%)	2 (5%)	

goal, this difference was not significant ($p=0.15$). With the third dose 13 (32.5%) patients in group N and 9 (22.5%) patients in group L achieved the blood pressure goal ($p=0.43$), with 4th dose 11 (27.5%) patient in N group and 5 (12.5%) patients in L group achieved N group and 5 (12.5%) patients in L group achieved blood pressure goal ($p=0.71$). increasing the dose to 5th one 4 (10%) group in N group and 0(0%) in L group achieved blood pressure (Table 2).

With respect to adverse events headache was experience in 2 (5%) patients dizziness was in 1 (2.5%) patient, mother tachycardia in 1 (2.5%) patients and fetal tachycardia in 2 (5%) patients in labetalol group. In nifedipine group mother tachycardia was experience in 2 (5%) patient and fetal tachycardia in 2 (5%) patient. There was no significant difference in both groups ($p=1.03$) (Table 2).

DISCUSSION

The use of nifedipine and labetalol has been studied in a number of studies. In our study 80 patients with 40 in each group, mean age was 26.41 ± 5.30 years in group Nifedipine and 25.31 ± 4.18 years in group Labetalol ($p=0.093$) this result was similar to those obtained by Sathya et al. who showed the mean age of presentation 23.4 ± 3.8 years in nifedipine group and 24.6 ± 3.3 years in labetalol group⁸ there was no difference in both group in baselines in both groups also shown by Shekar et al.⁹ and Stephen et al¹⁰.

In our study both drugs showed reduction in BP, so both were effective. This result consistent with the previous studies^{8,11-13} the number of doses indirectly shows the time taken by the drugs to decrease the BP, 30% of patients showed reduction in BP in nifedipine group with just 2 doses of 30mg and 30 mg 30 minutes apart and 65% of patients showed decrease in the BP with just 2 doses of labetalol of 20 mg and 40mg. in all patients the in labetalol group the require target BP was achieved in labetalol group before reaching to 5th dose of labetalol i.e. before 220mg dose. The reduction in Blood pressure in our study was more with the first dose in labetalol group as compared to nifedipine group, this is because of the rapid onset action of labetalol, our study result consistent with result of Sathya⁸, however significant lowered number of dose of nifedipine for achieving the target goal of blood pressure was reported by metanalysis¹⁴.

Some adverse event was experience by small amount of patient like tachycardia, headache nausea and vomiting, there was no significant difference in both these, and also the number of patient experiences these symptoms very low. So there is no significance difference in according both drugs or in other words in term of these symptoms both drugs are safe. This result is also shown in many other studies^{8, 15, 16}.

Limitation of the study includes the non-randomization of the patients, as this was just the comparison

of the two medicines for pregnancy related severe hypertension. The adverse events are small and may be coincidence.

CONCLUSION

Both the drug is effective in controlling the severe hypertension in pregnancy. Labetalol were rapid in while nifedipine took time for BP controlling. Further randomization studies are recommended to further strength these effects.

REFERENCES

1. Bowyer L. The Confidential Enquiry into Maternal and Child Health (CEMACH). Saving Mothers' Lives: reviewing maternal deaths to make motherhood safer 2003–2005. The Seventh Report of the Confidential Enquiries into Maternal Deaths in the UK. SAGE Publications Sage UK: London, England; 2008.
2. Samadi AR, Mayberry RM, Zaidi AA, Pleasant JC, McGhee Jr N, Rice RJ. Maternal hypertension and associated pregnancy complications among African-American and other women in the United States. *Obstetrics & Gynecology*. 1996;87(4):557-63.
3. Chhabra S, Kakani A. Maternal mortality due to eclamptic and non-eclamptic hypertensive disorders: a challenge. *Journal of obstetrics and gynaecology*. 2007;27(1):25-9.
4. ACOG Committee Opinion Number 514, Emergent therapy for acute-onset, severe hypertension with severe preeclampsia or eclampsia. . December 2011.
5. Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. *Best Practice & Research Clinical Obstetrics & Gynaecology*. 2011;25(4):391-403.
6. National Collaborating Centre for Women's and Children's Health. . RCOG Press, London. 2010.
7. Duley L, Meher S, Jones L. Drugs for treatment of very high blood pressure during pregnancy. *Cochrane Database of Systematic Reviews*. 2013(7).
8. Sathya Lakshmi B, Dasari P. Oral nifedipine versus intravenous labetalol in hypertensive urgencies and emergencies of pregnancy: a randomized clinical trial. *Obstet Med*. 2012;5(4):171-5.
9. Shekar S, Gupta N, Kirubakaran R, Pareek P. Oral nifedipine versus intravenous labetalol for severe hypertension during pregnancy: a systematic review and meta-analysis. *BJOG: An International Journal of Obstetrics & Gynaecology*. 2016;123(1):40-7.
10. Vermillion ST, Scardo JA, Newman RB, Chauhan SP. A randomized, double-blind trial of oral nifedipine and intravenous labetalol in hypertensive emergencies of pregnancy. *American Journal of Obstetrics and Gynecology*. 1999;181(4):858-61.
11. Aali BS, Nejad SS. Nifedipine or hydralazine as a first-line agent to control hypertension in severe preeclampsia. *Acta obstetricia et gynecologica*

Scandinavica. 2002;81(1):25-30.

12. Vigil-De Gracia P, Ruiz E, Lopez JC, de Jaramillo IA, Vega-Maleck JC, Pinzon J. Management of severe hypertension in the postpartum period with intravenous hydralazine or labetalol: a randomized clinical trial. *Hypertension in pregnancy*. 2007;26(2):163-71.
13. Vigil-De Gracia P, Lasso M, Ruiz E, Vega-Malek JC, de Mena FT, Lopez JC. Severe hypertension in pregnancy: hydralazine or labetalol. A randomized clinical trial. *European journal of obstetrics, gynecology, and reproductive biology*. 2006;128(1-2):157-62.
14. Shi Q, Leng W, Yao Q, Mi C, Xing A. Oral nifedipine versus intravenous labetalol for the treatment of severe hypertension in pregnancy. *International journal of cardiology*. 2015;178:162-4.
15. Waterman EJ, Magee LA, Lim KI, Skoll A, Rurak D, von Dadelszen P. Do commonly used oral antihypertensives alter fetal or neonatal heart rate characteristics? A systematic review. *Hypertension in pregnancy*. 2004;23(2):155-69.
16. Mahmoud TZ, Bjornsson S, Calder AA. Labetalol therapy in pregnancy induced hypertension: the effects on fetoplacental circulation and fetal outcome. *European journal of obstetrics, gynecology, and reproductive biology*. 1993;50(2):109-13.

ONLINE SUBMISSION OF MANUSCRIPT

It is mandatory to submit the manuscripts at the following website of KJMS. It is quick, convenient, cheap, requirement of HEC and Paperless.

Website: www.kjms.com.pk

The intending writers are expected to first register themselves on the website and follow the instructions on the website. Author agreement can be easily downloaded from our website. A duly signed author agreement must accompany initial submission of the manuscript.